

FIGURE 5-12
A B-spline of order 2, called the "hat" function

This makes the computation of B-splines very easy. To find the value of a B-spline of order m at θ, we just start with order 1 and keep multiplying and adding according to equation 5.14, until we reach order m. Furthermore most of the B-spline values will be zero. Here is what we mean:

Suppose it is desired to find a fifth order B-spline at t which is between the third and fourth knots. We want to find

$$
\begin{equation*}
B_{5,3}(t), \quad t_{3}<t<t_{4} \tag{5.15a}
\end{equation*}
$$

According to equation 5.14, we must compute first

$$
\begin{equation*}
B_{4,3}(t), B_{4,4}(t) \tag{5.15b}
\end{equation*}
$$

and for them we need all of the following

$$
\begin{gather*}
B_{3,3}(t), B_{3,4}(t), B_{3,5}(t) \\
B_{2,3}(t), B_{2,4}(t), B_{2,5}(t), B_{2,6}(t) \tag{5.15c}\\
B_{1,3}(t), B_{1,4}(t), B_{1,5}(t), B_{1,6}(t), B_{1,7}(t)
\end{gather*}
$$

But, an important point for the reader to notice, B-splines are local to the extent that

$$
B_{m, j}(\theta) \begin{cases}=0, & \theta \leq t_{j} \tag{5.16}\\ \neq 0, & t_{j}<\theta<t_{j+m} \\ =0, & \theta \geq t_{j+m}\end{cases}
$$

and therefore, for the interval from $\operatorname{knot} j$ to $\operatorname{knot} j+1$, the only B -splines that contribute anything are

