imaginary:

$$
\begin{equation*}
c \sin (\theta+\alpha)+\rho=R_{b}+s \tag{7.12c}
\end{equation*}
$$

The center of curvature C is stationary on the cam, meaning that the magnitudes of c and ρ, and angle α do not change for small changes in cam angle θ. (These values are not constant but are at stationary values. Their first derivatives with respect to θ are zero, but their higher derivatives are not zero.)

Differentiating equation 7.12 a with respect to θ then gives:

$$
\begin{equation*}
j c e^{j(\theta+\alpha)}=\frac{d x}{d \theta}+j \frac{d s}{d \theta} \tag{7.13}
\end{equation*}
$$

Substitute the Euler equation in equation 7.13 and separate the real and imaginary parts.
real:

$$
\begin{equation*}
-c \sin (\theta+\alpha)=\frac{d x}{d \theta} \tag{7.14}
\end{equation*}
$$

imaginary:

$$
\begin{equation*}
c \cos (\theta+\alpha)=\frac{d s}{d \theta}=v \tag{7.15}
\end{equation*}
$$

Inspection of equations 7.12 b and 7.15 shows that:

$$
\begin{equation*}
x=v \tag{7.16}
\end{equation*}
$$

This is an interesting relationship that says the x position of the contact point between cam and follower is numerically equal to the velocity of the follower in length/ rad. This means that the v diagram gives a direct measure of the necessary minimum face width of the flat follower.

$$
\begin{equation*}
\text { facewidth }>v_{\max }-v_{\min } \tag{7.17}
\end{equation*}
$$

If the velocity function is asymmetric, then a minimum-width follower will have to be asymmetric also, in order not to fall off the cam.

Differentiating equation 7.16 with respect to θ gives:

$$
\begin{equation*}
\frac{d x}{d \theta}=\frac{d v}{d \theta}=a \tag{7.18}
\end{equation*}
$$

Equations 7.12 c and 7.14 can be solved simultaneously and equation 7.18 substituted in the result to yield:

$$
\begin{equation*}
\rho=R_{b}+s+a \tag{7.19a}
\end{equation*}
$$

and the minimum value of radius of curvature is

$$
\begin{equation*}
\rho_{\min }=R_{b}+(s+a)_{\min } \tag{7.19b}
\end{equation*}
$$

BASE CIRCLE Note that equation 7.19 defines the radius of curvature in terms of the base circle radius and the displacement and acceleration functions from the $s v a j$ diagrams only. Because ρ cannot be allowed to become negative with a flat-faced fol-

