Kloomock and Muffley, ${ }^{[2]}$ and Raven. ${ }^{[3]}$ We will follow Kloomock and Muffley's presentation here. Figure 7-8 shows two positions of the follower arm $B C$ being rotated around a "stationary" cam in the typical inversion of the motion for analysis purposes. (Typically, the follower arm pivot B remains stationary and the cam rotates.) The initial position $B C$ becomes $B^{\prime} C^{\prime}$ at a later time after the cam has rotated through the angle γ. Though these positions are shown widely separated for clarity, the analysis considers them to be an infinitesimal angle $d \gamma$ apart.

The pressure angle ϕ is defined as the angle between the normal force N applied at the cam-roller interface, shown as vector $C^{\prime} N$, and the direction of the velocity of the roller center, shown as $C^{\prime} D^{\prime}$. Neglecting friction and taking moments about the arm pivot B^{\prime} gives

$$
\begin{equation*}
\frac{N l}{T}=\frac{1}{\cos \phi} \tag{7.6}
\end{equation*}
$$

where l is the length of the arm and T is the applied load torque on the follower arm. The torque ratio $N / / T$ is similar to the force magnification factor N / F of equation 7.1 b for a radial cam with translating roller follower.

From the geometry of Figure 7-8, note that as $d \gamma$ approaches zero, γ^{\prime} approaches γ, δ^{\prime} approaches δ, and ε^{\prime} approaches ε. An expression for pressure angle ϕ can be written as:

$$
\begin{align*}
& \phi=\frac{\pi}{2}-(\varepsilon-\lambda) \tag{7.7a}\\
& \lambda=\tan ^{-1} \frac{1}{R} \frac{d R}{d \gamma} \tag{7.7b}
\end{align*}
$$

The triangle $O B^{\prime} C^{\prime}$ in Figure 7-8a (and shown separately in Figure 7-8b) can be solved for R, ε, and ψ.

$$
\begin{align*}
R & =\sqrt{l^{2}+c^{2}-2 l c \cos \delta} \tag{7.7c}\\
\varepsilon & =\sin ^{-1}\left(\frac{c}{R} \sin \delta\right) \tag{7.7d}\\
\psi & =\cos ^{-1}\left(\frac{c^{2}+R^{2}-l^{2}}{2 R c}\right) \tag{7.7e}
\end{align*}
$$

Also from Figure 7-8 it can be seen that

$$
\begin{equation*}
\gamma=\psi_{0}-\psi+\theta \tag{7.7f}
\end{equation*}
$$

Differentiating equation 7.7 f with respect to R :

$$
\begin{equation*}
\frac{d \gamma}{d R}=\frac{d \theta}{d R}-\frac{d \psi}{d R} \tag{7.7g}
\end{equation*}
$$

Differentiating equation 7.7 c with respect to θ and reciprocating:

